9 research outputs found

    Emergent non-commutative matter fields from Group Field Theory models of quantum spacetime

    Full text link
    We offer a perspective on some recent results obtained in the context of the group field theory approach to quantum gravity, on top of reviewing them briefly. These concern a natural mechanism for the emergence of non-commutative field theories for matter directly from the GFT action, in both 3 and 4 dimensions and in both Riemannian and Lorentzian signatures. As such they represent an important step, we argue, in bridging the gap between a quantum, discrete picture of a pre-geometric spacetime and the effective continuum geometric physics of gravity and matter, using ideas and tools from field theory and condensed matter analog gravity models, applied directly at the GFT level.Comment: 13 pages, no figures; uses JPConf style; contribution to the proceedings of the D.I.C.E. 2008 worksho

    Emergence: Key physical issues for deeper philosophical inquiries

    Full text link
    A sketch of three senses of emergence and a suggestive view on the emergence of time and the direction of time is presented. After trying to identify which issues philosophers interested in emergent phenomena in physics view as important I make several observations pertaining to the concepts, methodology and mechanisms required to understand emergence and describe a platform for its investigation. I then identify some key physical issues which I feel need be better appreciated by the philosophers in this pursuit. I end with some comments on one of these issues, that of coarse-graining and persistent structures.Comment: 16 pages. Invited Talk at the Heinz von Foerster Centenary International Conference on Self-Organization and Emergence: Emergent Quantum Mechanics (EmerQuM11). Nov. 10-13, 2011, Vienna, Austria. Proceedings to appear in J. Phys. (Conf. Series

    Emergence: Key physical issues for deeper philosophical inquiries

    Full text link
    A sketch of three senses of emergence and a suggestive view on the emergence of time and the direction of time is presented. After trying to identify which issues philosophers interested in emergent phenomena in physics view as important I make several observations pertaining to the concepts, methodology and mechanisms required to understand emergence and describe a platform for its investigation. I then identify some key physical issues which I feel need be better appreciated by the philosophers in this pursuit. I end with some comments on one of these issues, that of coarse-graining and persistent structures.Comment: 16 pages. Invited Talk at the Heinz von Foerster Centenary International Conference on Self-Organization and Emergence: Emergent Quantum Mechanics (EmerQuM11). Nov. 10-13, 2011, Vienna, Austria. Proceedings to appear in J. Phys. (Conf. Series

    Generalized quantum gravity condensates for homogeneous geometries and cosmology

    No full text
    We construct a generalized class of quantum gravity condensate states, that allows the description of continuum homogeneous quantum geometries within the full theory. They are based on similar ideas already applied to extract effective cosmological dynamics from the group field theory formalism, and thus also from loop quantum gravity. However, they represent an improvement over the simplest condensates used in the literature, in that they are defined by an infinite superposition of graph-based states encoding in a precise way the topology of the spatial manifold. The construction is based on the definition of refinement operators on spin network states, written in a second quantized language. The construction lends itself easily to be applied also to the case of spherically symmetric quantum geometries
    corecore